Exact Representations from Feed-Forward Networks
نویسندگان
چکیده
We present an algorithm to extract representations from multiple hidden layer, multiple output feedforward perceptron threshold networks. The representation is based on polytopic decision regions in the input space{ and is exact not an approximation like most other network analysis methods. Multiple examples show some of the knowledge that can be extracted from networks by using this algorithm, including the geometrical form of artifacts and bad generalization. We compare threshold and sigmoidal networks with respect to the expressiveness of their decision regions, and also prove lower bounds for any algorithm which extracts decision regions from arbitrary neural networks.
منابع مشابه
Evolutionary Cellular Configurations for Designing Feed-Forward Neural Networks Architectures
In the recent years, the interest to develop automatic methods to determine appropriate architectures of feed-forward neural networks has increased. Most of the methods are based on evolutionary computation paradigms. Some of the designed methods are based on direct representations of the parameters of the network. These representations do not allow scalability, so to represent large architectu...
متن کاملApplication of Artificial Neural Networks and Support Vector Machines for carbonate pores size estimation from 3D seismic data
This paper proposes a method for the prediction of pore size values in hydrocarbon reservoirs using 3D seismic data. To this end, an actual carbonate oil field in the south-western part ofIranwas selected. Taking real geological conditions into account, different models of reservoir were constructed for a range of viable pore size values. Seismic surveying was performed next on these models. F...
متن کاملThe CHIR Algorithm for Feed Forward Networks with Binary Weights
A new learning algorithm, Learning by Choice of Internal Represetations (CHIR), was recently introduced. Whereas many algorithms reduce the learning process to minimizing a cost function over the weights, our method treats the internal representations as the fundamental entities to be determined. The algorithm applies a search procedure in the space of internal representations, and a cooperativ...
متن کاملNon-Direct Encoding Method Based on Cellular Automata to Design Neural Network Architectures
Architecture design is a fundamental step in the successful application of Feed forward Neural Networks. In most cases a large number of neural networks architectures suitable to solve a problem exist and the architecture design is, unfortunately, still a human expert’s job. It depends heavily on the expert and on a tedious trial-and-error process. In the last years, many works have been focuse...
متن کاملModeling of Resilient Modulus of Asphalt Concrete Containing Reclaimed Asphalt Pavement using Feed-Forward and Generalized Regression Neural Networks
Reclaimed asphalt pavement (RAP) is one of the waste materials that highway agencies promote to use in new construction or rehabilitation of highways pavement. Since the use of RAP can affect the resilient modulus and other structural properties of flexible pavement layers, this paper aims to employ two different artificial neural network (ANN) models for modeling and evaluating the effects of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000